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Signatures of integer expansions in real quadratic fields
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Number expansions can be constructed in many different ways. One of the most natural way is
to consider a lattice, a linear operator acting on it and a finite digit set describing the expansions.
This paper deals with the ring of integers in the real quadratic fields with canonical digit sets and
examines the possible signatures of the expansions. The authors present theoretical and algorithmic
results as well.

Let Q be the field of rational numbers, F ≥ 2 be a square-free integer. It is known that if F 6≡ 1
(mod 4) then {1, δ}, while for F ≡ 1 (mod 4) {1, ω} is an integer basis of Q(

√
F ), spreading the

lattices Λδ and Λω, respectively, where δ =
√
F , and ω = (1+

√
F )/2. Let α = a+bδ or α = a+bω,

a, b ∈ Z for which |α|, |α| > 1, and consider the linear operators

M1 =

(
a Fb
b a

)
and M2 =

(
a Eb
b a+ b

)
(1)

acting on the lattices Λδ and Λω, respectively, where E = (F − 1)/4. Let us define the (canonical)
set D = {je1} (j = 0, 1, . . . , |αα| − 1), where e1 is the unit vector. It is known ([1]) that D is a full
residue system modulo M (= M1 or M2) if and only if (a, b) = 1 and in this case the linear map
ϕ(z) = M−1(z−d) is ultimately (and finitely) periodic, where z ≡ d (mod M), d ∈ D (see e.g. [3]).
In a given system (Z2,M,D) we denote the set of periodic points by P. A signature [s1, s2, . . . , sv]
of that system is a finite sequence of non-negative integers in which the periodic structure of P
consists of #si cycles with period length i (1 ≤ i ≤ v). The paper presents the examination of
signatures of expansions in the lattices Λδ and Λω with operators defined in (1) and with canonical
digit sets. Using our theoretical results we present an efficient algorithm for finding the signatures.
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